资源论文Dimensionality Dependent PAC-Bayes Margin Bound

Dimensionality Dependent PAC-Bayes Margin Bound

2020-01-13 | |  57 |   43 |   0

Abstract

Margin is one of the most important concepts in machine learning. Previous margin bounds, both for SVM and for boosting, are dimensionality independent. A major advantage of this dimensionality independency is that it can explain the excellent performance of SVM whose feature spaces are often of high or infinite dimension. In this paper we address the problem whether such dimensionality independency is intrinsic for the margin bounds. We prove a dimensionality dependent PAC-Bayes margin bound. The bound is monotone increasing with respect to the dimension when keeping all other factors fixed. We show that our bound is strictly sharper than a previously well-known PAC-Bayes margin bound if the feature space is of finite dimension; and the two bounds tend to be equivalent as the dimension goes to infinity. In addition, we show that the VC bound for linear classifiers can be recovered from our bound under mild conditions. We conduct extensive experiments on benchmark datasets and find that the new bound is useful for model selection and is usually significantly sharper than the dimensionality independent PAC-Bayes margin bound as well as the VC bound for linear classifiers.

上一篇:Learning Probability Measures with Respect to Optimal Transport Metrics

下一篇:Augmented-SVM: Automatic space partitioning for combining multiple non-linear dynamics

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...