资源论文Semantic Kernel Forests from Multiple Taxonomies

Semantic Kernel Forests from Multiple Taxonomies

2020-01-13 | |  75 |   37 |   0

Abstract

When learning features for complex visual recognition problems, labeled image exemplars alone can be insufficient. While an object taxonomy specifying the categories’ semantic relationships could bolster the learning process, not all relationships are relevant to a given visual classification task, nor does a single taxonomy capture all ties that are relevant. In light of these issues, we propose a discriminative feature learning approach that leverages multiple hierarchical taxonomies representing different semantic views of the object categories (e.g., for animal classes, one taxonomy could reflect their phylogenic ties, while another could reflect their habitats). For each taxonomy, we first learn a tree of semantic kernels, where each node has a Mahalanobis kernel optimized to distinguish between the classes in its children nodes. Then, using the resulting semantic kernel forest, we learn class-specific kernel combinations to select only those relationships relevant to recognize each object class. To learn the weights, we introduce a novel hierarchical regularization term that further exploits the taxonomies’ structure. We demonstrate our method on challenging object recognition datasets, and show that interleaving multiple taxonomic views yields significant accuracy improvements.

上一篇:Human memory search as a random walk in a semantic network

下一篇:Symmetric Correspondence Topic Models for Multilingual Text Analysis

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...