资源论文Bayesian Hierarchical Reinforcement Learning

Bayesian Hierarchical Reinforcement Learning

2020-01-16 | |  110 |   41 |   0

Abstract

We describe an approach to incorporating Bayesian priors in the MAXQ framework for hierarchical reinforcement learning (HRL). We define priors on the primitive environment model and on task pseudo-rewards. Since models for composite tasks can be complex, we use a mixed model-based/model-free learning approach to find an optimal hierarchical policy. We show empirically that (i) our approach results in improved convergence over non-Bayesian baselines, (ii) using both task hierarchies and Bayesian priors is better than either alone, (iii) taking advantage of the task hierarchy reduces the computational cost of Bayesian reinforcement learning and (iv) in this framework, task pseudo-rewards can be learned instead of being manually specified, leading to hierarchically optimal rather than recursively optimal policies.

上一篇:Transferring Expectations in Model-based Reinforcement Learning

下一篇:Efficient Reinforcement Learning for High Dimensional Linear Quadratic Systems

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...