资源论文Inverse Density as an Inverse Problem: the Fredholm Equation Approach

Inverse Density as an Inverse Problem: the Fredholm Equation Approach

2020-01-16 | |  125 |   48 |   0

Abstract

We address the problem of estimating the ratio pq where p is a density function and q is another density, or, more generally an arbitrary function. Knowing or approximating this ratio is needed in various problems of inference and integration often referred to as importance sampling in statistical inference. It is also closely related to the problem of covariate shift in transfer learning. Our approach is based on reformulating the problem of estimating the ratio as an inverse problem in terms of an integral operator corresponding to a kernel, known as the Fredholm problem of the first kind. This formulation, combined with the techniques of regularization leads to a principled framework for constructing algorithms and for analyzing them theoretically. The resulting family of algorithms (FIRE, for Fredholm Inverse Regularized Estimator) is flexible, simple and easy to implement. We provide detailed theoretical analysis including concentration bounds and convergence rates for the Gaussian kernel for densities defined on Rd and smooth d-dimensional sub-manifolds of the Euclidean space. Model selection for unsupervised or semi-supervised inference is generally a difficult problem. It turns out that in the density ratio estimation setting, when samples from both distributions are available, simple completely unsupervised model selection methods are available. We call this mechanism CD-CV for Cross-Density Cross-Validation. We show encouraging experimental results including applications to classification within the covariate shift framework.

上一篇:Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation

下一篇:The Fast Convergence of Incremental PCA

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...