资源论文Sensor Selection in High-Dimensional Gaussian Trees with Nuisances

Sensor Selection in High-Dimensional Gaussian Trees with Nuisances

2020-01-16 | |  53 |   40 |   0

Abstract

We consider the sensor selection problem on multivariate Gaussian distributions where only a subset of latent variables is of inferential interest. For pairs of vertices connected by a unique path in the graph, we show that there exist decompositions of nonlocal mutual information into local information measures that can be computed efficiently from the output of message passing algorithms. We integrate these decompositions into a computationally efficient greedy selector where the computational expense of quantification can be distributed across nodes in the network. Experimental results demonstrate the comparative efficiency of our algorithms for sensor selection in high-dimensional distributions. We additionally derive an online-computable performance bound based on augmentations of the relevant latent variable set that, when such a valid augmentation exists, is applicable for any distribution with nuisances.

上一篇:Embed and Project: Discrete Sampling with Universal Hashing

下一篇:A memory frontier for complex synapses

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...