资源论文Perfect Associative Learning with Spike-Timing-Dependent Plasticity

Perfect Associative Learning with Spike-Timing-Dependent Plasticity

2020-01-16 | |  77 |   40 |   0

Abstract

Recent extensions of the Perceptron as the Tempotron and the Chronotron suggest that this theoretical concept is highly relevant for understanding networks of spiking neurons in the brain. It is not known, however, how the computational power of the Perceptron might be accomplished by the plasticity mechanisms of real synapses. Here we prove that spike-timing-dependent plasticity having an anti-Hebbian form for excitatory synapses as well as a spike-timing-dependent plasticity of Hebbian shape for inhibitory synapses are sufficient for realizing the original Perceptron Learning Rule if these respective plasticity mechanisms act in concert with the hyperpolarisation of the post-synaptic neurons. We also show that with these simple yet biologically realistic dynamics Tempotrons and Chronotrons are learned. The proposed mechanism enables incremental associative learning from a continuous stream of patterns and might therefore underly the acquisition of long term memories in cortex. Our results underline that learning processes in realistic networks of spiking neurons depend crucially on the interactions of synaptic plasticity mechanisms with the dynamics of participating neurons.

上一篇:?-Optimality for Active Learning on Gaussian Random Fields

下一篇:Memory Limited, Streaming PCA

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...