资源论文(Nearly) Optimal Algorithms for Private Online Learning in Full-information and Bandit Settings

(Nearly) Optimal Algorithms for Private Online Learning in Full-information and Bandit Settings

2020-01-16 | |  88 |   41 |   0

Abstract

We give differentially private algorithms for a large class of online learning algorithms, in both the full information and bandit settings. Our algorithms aim to minimize a convex loss function which is a sum of smaller convex loss terms, one for each data point. To design our algorithms, we modify the popular mirror descent approach, or rather a variant called follow the approximate leader. The technique leads to the first nonprivate algorithms for private online learning in the bandit setting. In the full information setting, our algorithms improve over the regret bounds of previous work (due to Dwork, Naor, Pitassi and Rothblum (2010) and Jain, Kothari and Thakurta (2012)). In many cases, our algorithms (in both settings) match the dependence on the input length, T , of the optimal nonprivate regret bounds up to logarithmic factors in T . Our algorithms require logarithmic space and update time.

上一篇:A multi-agent control framework for co-adaptation in brain-computer interfaces

下一篇:A Stability-based Validation Procedure for Differentially Private Machine Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...