资源论文Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions

Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions

2020-01-16 | |  87 |   46 |   0

Abstract

We propose a compressed sensing (CS) calcium imaging framework for monitoring large neuronal populations, where we image randomized projections of the spatial calcium concentration at each timestep, instead of measuring the concentration at individual locations. We develop scalable nonnegative deconvolution methods for extracting the neuronal spike time series from such observations. We also address the problem of demixing the spatial locations of the neurons using rank-penalized matrix factorization methods. By exploiting the sparsity of neural spiking we demonstrate that the number of measurements needed per timestep is significantly smaller than the total number of neurons, a result that can potentially enable imaging of larger populations at considerably faster rates compared to traditional raster-scanning techniques. Unlike traditional CS setups, our problem involves a block-diagonal sensing matrix and a non-orthogonal sparse basis that spans multiple timesteps. We provide tight approximations to the number of measurements needed for perfect deconvolution for certain classes of spiking processes, and show that this number undergoes a “phase transition,” which we characterize using modern tools relating conic geometry to compressed sensing.

上一篇:Beyond Pairwise: Provably Fast Algorithms for Approximate k-Way Similarity Search

下一篇:Transfer Learning in a Transductive Setting

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...