资源论文Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis

Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis

2020-01-16 | |  84 |   33 |   0

Abstract

The performance of standard algorithms for Independent Component Analysis quickly deteriorates under the addition of Gaussian noise. This is partially due to a common first step that typically consists of whitening, i.e., applying Principal Component Analysis (PCA) and rescaling the components to have identity covariance, which is not invariant under Gaussian noise. In our paper we develop the first practical algorithm for Independent Component Analysis that is provably invariant under Gaussian noise. The two main contributions of this work are as follows: 1. We develop and implement an efficient, Gaussian noise invariant decorrelation (quasi-orthogonalization) algorithm using Hessians of the cumulant functions. 2. We propose a very simple and efficient fixed-point GI-ICA (Gradient Iteration ICA) algorithm, which is compatible with quasi-orthogonalization, as well as with the usual PCA-based whitening in the noiseless case. The algorithm is based on a special form of gradient iteration (different from gradient descent). We provide an analysis of our algorithm demonstrating fast convergence following from the basic properties of cumulants. We also present a number of experimental comparisons with the existing methods, showing superior results on noisy data and very competitive performance in the noiseless case.

上一篇:Reward Mapping for Transfer in Long-Lived Agents

下一篇:Integrated Non-Factorized Variational Inference

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...