资源论文Statistical Active Learning Algorithms

Statistical Active Learning Algorithms

2020-01-16 | |  61 |   39 |   0

Abstract

We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise and differentially-private. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns [30]. We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of “uncorrelated” noise. We show that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error  over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case.

上一篇:A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data

下一篇:Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...