资源论文Approximate inference in latent Gaussian-Markov models from continuous time observations

Approximate inference in latent Gaussian-Markov models from continuous time observations

2020-01-16 | |  76 |   40 |   0

Abstract

We propose an approximate inference algorithm for continuous time Gaussian Markov process models with both discrete and continuous time likelihoods. We show that the continuous time limit of the expectation propagation algorithm exists and results in a hybrid fixed point iteration consisting of (1) expectation propagation updates for discrete time terms and (2) variational updates for the continuous time term. We introduce postinference corrections methods that improve on the marginals of the approximation. This approach extends the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models with point process observations) and box likelihood models. Experimental results on real and simulated data demonstrate high distributional accuracy and significant computational savings compared to discrete-time approaches in a neural application.

上一篇:When Are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity

下一篇:Learning Multi-level Sparse Representations

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...