资源论文Multilinear Dynamical Systems for Tensor Time Series

Multilinear Dynamical Systems for Tensor Time Series

2020-01-16 | |  63 |   38 |   0

Abstract

Data in the sciences frequently occur as sequences of multidimensional arrays called tensors. How can hidden, evolving trends in such data be extracted while preserving the tensor structure? The model that is traditionally used is the linear dynamical system (LDS) with Gaussian noise, which treats the latent state and observation at each time slice as a vector. We present the multilinear dynamical system (MLDS) for modeling tensor time series and an expectation–maximization (EM) algorithm to estimate the parameters. The MLDS models each tensor observation in the time series as the multilinear projection of the corresponding member of a sequence of latent tensors. The latent tensors are again evolving with respect to a multilinear projection. Compared to the LDS with an equal number of parameters, the MLDS achieves higher prediction accuracy and marginal likelihood for both artificial and real datasets.

上一篇:Exact and Stable Recovery of Pairwise Interaction Tensors

下一篇:Heterogeneous-Neighborhood-based Multi-Task Local Learning Algorithms

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...