资源论文Convergence of Monte Carlo Tree Search in Simultaneous Move Games

Convergence of Monte Carlo Tree Search in Simultaneous Move Games

2020-01-16 | |  92 |   55 |   0

Abstract

We study Monte Carlo tree search (MCTS) in zero-sum extensive-form games with perfect information and simultaneous moves. We present a general template of MCTS algorithms for these games, which can be instantiated by various selection methods. We formally prove that if a selection method is -Hannan consistent in a matrix game and satisfies additional requirements on exploration, then the MCTS algorithm eventually converges to an approximate Nash equilibrium (NE) of the extensive-form game. We empirically evaluate this claim using regret matching and Exp3 as the selection methods on randomly generated games and empirically selected worst case games. We confirm the formal result and show that additional MCTS variants also converge to approximate NE on the evaluated games.

上一篇:Bellman Error Based Feature Generation using Random Projections on Sparse Spaces

下一篇:Parallel Sampling of DP Mixture Models using Sub-Clusters Splits

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...