资源论文Context-sensitive active sensing in humans

Context-sensitive active sensing in humans

2020-01-16 | |  103 |   37 |   0

Abstract

Humans and animals readily utilize active sensing, or the use of self-motion, to focus sensory and cognitive resources on the behaviorally most relevant stimuli and events in the environment. Understanding the computational basis of natural active sensing is important both for advancing brain sciences and for developing more powerful artificial systems. Recently, we proposed a goal-directed, context-sensitive, Bayesian control strategy for active sensing, C-DAC (ContextDependent Active Controller) (Ahmad & Yu, 2013). In contrast to previously proposed algorithms for human active vision, which tend to optimize abstract statistical objectives and therefore cannot adapt to changing behavioral context or task goals, C-DAC directly minimizes behavioral costs and thus, automatically adapts itself to different task conditions. However, C-DAC is limited as a model of human active sensing, given its computational/representational requirements, especially for more complex, real-world situations. Here, we propose a myopic approximation to C-DAC, which also takes behavioral costs into account, but achieves a significant reduction in complexity by looking only one step ahead. We also present data from a human active visual search experiment, and compare the performance of the various models against human behavior. We find that C-DAC and its myopic variant both achieve better fit to human data than Infomax (Butko & Movellan, 2010), which maximizes expected cumulative future information gain. In summary, this work provides novel experimental results that differentiate theoretical models for human active sensing, as well as a novel active sensing algorithm that retains the context-sensitivity of the optimal controller while achieving significant computational savings.

上一篇:A message-passing algorithm for multi-agent trajectory planning

下一篇:Latent Structured Active Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...