资源论文Recurrent networks of coupled Winner-Take-Alloscillators for solving constraint satisfaction problems

Recurrent networks of coupled Winner-Take-Alloscillators for solving constraint satisfaction problems

2020-01-16 | |  53 |   41 |   0

Abstract

We present a recurrent neuronal network, modeled as a continuous-time dynamical system, that can solve constraint satisfaction problems. Discrete variables are represented by coupled Winner-Take-All (WTA) networks, and their values are encoded in localized patterns of oscillations that are learned by the recurrent weights in these networks. Constraints over the variables are encoded in the network connectivity. Although there are no sources of noise, the network can escape from local optima in its search for solutions that satisfy all constraints by modifying the effective network connectivity through oscillations. If there is no solution that satisfies all constraints, the network state changes in a seemingly random manner and its trajectory approximates a sampling procedure that selects a variable assignment with a probability that increases with the fraction of constraints satisfied by this assignment. External evidence, or input to the network, can force variables to specific values. When new inputs are applied, the network re-evaluates the entire set of variables in its search for states that satisfy the maximum number of constraints, while being consistent with the external input. Our results demonstrate that the proposed network architecture can perform a deterministic search for the optimal solution to problems with non-convex cost functions. The network is inspired by canonical microcircuit models of the cortex and suggests possible dynamical mechanisms to solve constraint satisfaction problems that can be present in biological networks, or implemented in neuromorphic electronic circuits.

上一篇:Convex Two-Layer Modeling

下一篇:Speedup Matrix Completion with Side Information: Application to Multi-Label Learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...