资源论文Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models

Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models

2020-01-16 | |  54 |   39 |   0

Abstract

Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no commonly accepted procedure exists for computing classical measures of uncertainty and statistical significance as confidence intervals or p-values. We consider here a broad class of regression problems, and propose an efficient algorithm for constructing confidence intervals and p-values. The resulting confidence intervals have nearly optimal size. When testing for the null hypothesis that a certain parameter is vanishing, our method has nearly optimal power. Our approach is based on constructing a ‘de-biased’ version of regularized Mestimators. The new construction improves over recent work in the field in that it does not assume a special structure on the design matrix. Furthermore, proofs are remarkably simple. We test our method on a diabetes prediction problem.

上一篇:Generalized Method-of-Moments for Rank Aggregation

下一篇:Near-Optimal Entrywise Sampling for Data Matrices

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...