资源论文Estimation, Optimization, and Parallelism when Data is Sparse

Estimation, Optimization, and Parallelism when Data is Sparse

2020-01-16 | |  63 |   32 |   0

Abstract

We study stochastic optimization problems when the data is sparse, which is in a sense dual to current perspectives on high-dimensional statistical learning and optimization. We highlight both the difficulties—in terms of increased sample complexity that sparse data necessitates—and the potential benefits, in terms of allowing parallelism and asynchrony in the design of algorithms. Concretely, we derive matching upper and lower bounds on the minimax rate for optimization and learning with sparse data, and we exhibit algorithms achieving these rates. We also show how leveraging sparsity leads to (still minimax optimal) parallel and asynchronous algorithms, providing experimental evidence complementing our theoretical results on several medium to large-scale learning tasks.

上一篇:Distributed k-Means and k-Median Clustering on General Topologies

下一篇:Learning from Limited Demonstrations

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...