资源论文Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA

Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA

2020-01-16 | |  60 |   31 |   0

Abstract

We propose a novel convex relaxation of sparse principal subspace estimation based on the convex hull of rank-d projection matrices (the Fantope). The convex problem can be solved efficiently using alternating direction method of multipliers (ADMM). We establish a near-optimal convergence rate, in terms of the sparsity, ambient dimension, and sample size, for estimation of the principal subspace of a general covariance matrix without assuming the spiked covariance model. In the special case of d = 1, our result implies the near-optimality of DSPCA (d’Aspremont et al. [1]) even when the solution is not rank 1. We also provide a general theoretical framework for analyzing the statistical properties of the method for arbitrary input matrices that extends the applicability and provable guarantees to a wide array of settings. We demonstrate this with an application to Kendall’s tau correlation matrices and transelliptical component analysis.

上一篇:Online Variational Approximations to non-Exponential Family Change Point Models: With Application to Radar Tracking

下一篇:Streaming Variational Bayes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...