资源论文Fisher-Optimal Neural Population Codes for High-Dimensional Diffeomorphic Stimulus Representations

Fisher-Optimal Neural Population Codes for High-Dimensional Diffeomorphic Stimulus Representations

2020-01-16 | |  88 |   46 |   0

Abstract

In many neural systems, information about stimulus variables is often represented in a distributed manner by means of a population code. It is generally assumed that the responses of the neural population are tuned to the stimulus statistics, and most prior work has investigated the optimal tuning characteristics of one or a small number of stimulus variables. In this work, we investigate the optimal tuning for diffeomorphic representations of high-dimensional stimuli. We analytically derive the solution that minimizes the L2 reconstruction loss. We compared our solution with other well-known criteria such as maximal mutual information. Our solution suggests that the optimal weights do not necessarily decorrelate the inputs, and the optimal nonlinearity differs from the conventional equalization solution. Results illustrating these optimal representations are shown for some input distributions that may be relevant for understanding the coding of perceptual pathways.

上一篇:Online PCA for Contaminated Data

下一篇:RNADE: The real-valued neural autoregressive density-estimator

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...