资源论文Compete to Compute

Compete to Compute

2020-01-16 | |  104 |   53 |   0

Abstract

Local competition among neighboring neurons is common in biological neural networks (NNs). In this paper, we apply the concept to gradient-based, backprop-trained artificial multilayer NNs. NNs with competing linear units tend to outperform those with non-competing nonlinear units, and avoid catastrophic forgetting when training sets change over time.

上一篇:Robust Spatial Filtering with Beta Divergence

下一篇:Global Solver and Its Efficient Approximation for Variational Bayesian Low-rank Subspace Clustering

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • dynamical system ...

    allows to preform manipulations of heavy or bul...

  • The Variational S...

    Unlike traditional images which do not offer in...