资源论文An Approximate, Efficient Solver for LP Rounding

An Approximate, Efficient Solver for LP Rounding

2020-01-16 | |  53 |   42 |   0

Abstract

Many problems in machine learning can be solved by rounding the solution of an appropriate linear program (LP). This paper shows that we can recover solutions of comparable quality by rounding an approximate LP solution instead of the exact one. These approximate LP solutions can be computed efficiently by applying a parallel stochastic-coordinate-descent method to a quadratic-penalty formulation of the LP. We derive worst-case runtime and solution quality guarantees of this scheme using novel perturbation and convergence analysis. Our experiments demonstrate that on such combinatorial problems as vertex cover, independent set and multiway-cut, our approximate rounding scheme is up to an order of magnitude faster than Cplex (a commercial LP solver) while producing solutions of similar quality.

上一篇:On the Complexity and Approximation of Binary Evidence in Lifted Inference

下一篇:Understanding variable importances in forests of randomized trees

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...