资源论文Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic

Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic

2020-01-16 | |  59 |   35 |   0

Abstract

The detection of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. Beyond its wide applicability, graph structured anomaly detection serves as a case study in the difficulty of balancing computational complexity with statistical power. In this work, we develop from first principles the generalized likelihood ratio test for determining if there is a well connected region of activation over the vertices in the graph in Gaussian noise. Because this test is computationally infeasible, we provide a relaxation, called the Lovasz extended scan statistic (LESS) that uses submodularity to approximate the intractable generalized likelihood ratio. We demonstrate a connection between LESS and maximum a-posteriori inference in Markov random fields, which provides us with a poly-time algorithm for LESS. Using electrical network theory, we are able to control type 1 error for LESS and prove conditions under which LESS is risk consistent. Finally, we consider specific graph models, the torus, knearest neighbor graphs, and 图片.png-random graphs. We show that on these graphs our results provide near-optimal performance by matching our results to known lower bounds.

上一篇:Understanding variable importances in forests of randomized trees

下一篇:Robust Low Rank Kernel Embeddings of Multivariate Distributions

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...