资源论文Estimating the Unseen: Improved Estimators for Entropy and other Properties

Estimating the Unseen: Improved Estimators for Entropy and other Properties

2020-01-16 | |  53 |   35 |   0

Abstract

Recently, Valiant and Valiant [1, 2] showed that a class of distributional properties, which includes such practically relevant properties as entropy, the number of distinct elements, and distance metrics between pairs of distributions, can be estimated given a sublinear sized sample. Specifically, given a sample consisting of independent draws from any distribution over at most n distinct elements, these properties can be estimated accurately using a sample of size 图片.png We propose a novel modification of this approach and show: 1) theoretically, this estimator is optimal (to constant factors, over worst-case instances), and 2) in practice, it performs exceptionally well for a variety of estimation tasks, on a variety of natural distributions, for a wide range of parameters. Perhaps unsurprisingly, the key step in our approach is to first use the sample to characterize the “unseen” portion of the distribution. This goes beyond such tools as the Good-Turing frequency estimation scheme, which estimates the total probability mass of the unobserved portion of the distribution: we seek to estimate the shape of the unobserved portion of the distribution. This approach is robust, general, and theoretically principled; we expect that it may be fruitfully used as a component within larger machine learning and data analysis systems.

上一篇:Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

下一篇:Dimension-Free Exponentiated Gradient

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...