资源论文Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition

Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition

2020-01-16 | |  34 |   37 |   0

Abstract

Learning dynamic models from observed data has been a central issue in many scientific studies or engineering tasks. The usual setting is that data are collected sequentially from trajectories of some dynamical system operation. In quite a few modern scientific modeling tasks, however, it turns out that reliable sequential data are rather difficult to gather, whereas out-of-order snapshots are much easier to obtain. Examples include the modeling of galaxies, chronic diseases such Alzheimer’s, or certain biological processes. Existing methods for learning dynamic model from non-sequence data are mostly based on Expectation-Maximization, which involves non-convex optimization and is thus hard to analyze. Inspired by recent advances in spectral learning methods, we propose to study this problem from a different perspective: moment matching and spectral decomposition. Under that framework, we identify reasonable assumptions on the generative process of non-sequence data, and propose learning algorithms based on the tensor decomposition method [2] to provably recover firstorder Markov models and hidden Markov models. To the best of our knowledge, this is the first formal guarantee on learning from non-sequence data. Preliminary simulation results confirm our theoretical findings.

上一篇:Computing the Stationary Distribution, Locally

下一篇:Probabilistic Movement Primitives Alexandros Paraschos

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...