资源论文B IG & Q UIC: Sparse Inverse Covariance Estimation for a Million Variables

B IG & Q UIC: Sparse Inverse Covariance Estimation for a Million Variables

2020-01-16 | |  39 |   34 |   0

Abstract

The 图片.png -regularized Gaussian maximum likelihood estimator (MLE) has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix even under high-dimensional settings. However, it requires solving a difficult non-smooth log-determinant program with number of parameters scaling quadratically with the number of Gaussian variables. State-of-the-art methods thus do not scale to problems with more than 20, 000 variables. In this paper, we develop an algorithm B IG QUIC, which can solve 1 million dimensional 图片.png regularized Gaussian MLE problems (which would thus have 1000 billion parameters) using a single machine, with bounded memory. In order to do so, we carefully exploit the underlying structure of the problem. Our innovations include a novel block-coordinate descent method with the blocks chosen via a clustering scheme to minimize repeated computations; and allowing for inexact computation of specific components. In spite of these modifications, we are able to theoretically analyze our procedure and show that B IG QUIC can achieve super-linear or even quadratic convergence rates.

上一篇:Latent Maximum Margin Clustering

下一篇:Fast Determinantal Point Process Sampling with Application to Clustering

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...