资源论文Unsupervised Spectral Learning of FSTs

Unsupervised Spectral Learning of FSTs

2020-01-17 | |  105 |   40 |   0

Abstract

Finite-State Transducers (FST) are a standard tool for modeling paired inputoutput sequences and are used in numerous applications, ranging from computational biology to natural language processing. Recently Balle et al. [4] presented a spectral algorithm for learning FST from samples of aligned input-output sequences. In this paper we address the more realistic, yet challenging setting where the alignments are unknown to the learning algorithm. We frame FST learning as finding a low rank Hankel matrix satisfying constraints derived from observable statistics. Under this formulation, we provide identifiability results for FST distributions. Then, following previous work on rank minimization, we propose a regularized convex relaxation of this objective which is based on minimizing a nuclear norm penalty subject to linear constraints and can be solved efficiently.

上一篇:(More) Efficient Reinforcement Learning via Posterior Sampling

下一篇:Correlated random features for fast semi-supervised learning

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...