资源论文Shape and Illumination from Shading using the Generic Viewpoint Assumption

Shape and Illumination from Shading using the Generic Viewpoint Assumption

2020-01-17 | |  61 |   38 |   0

Abstract

The Generic Viewpoint Assumption (GVA) states that the position of the viewer or the light in a scene is not special. Thus, any estimated parameters from an observation should be stable under small perturbations such as object, viewpoint or light positions. The GVA has been analyzed and quantified in previous works, but has not been put to practical use in actual vision tasks. In this paper, we show how to utilize the GVA to estimate shape and illumination from a single shading image, without the use of other priors. We propose a novel linearized Spherical Harmonics (SH) shading model which enables us to obtain a computationally efficient form of the GVA term. Together with a data term, we build a model whose unknowns are shape and SH illumination. The model parameters are estimated using the Alternating Direction Method of Multipliers embedded in a multi-scale estimation framework. In this prior-free framework, we obtain competitive shape and illumination estimation results under a variety of models and lighting conditions, requiring fewer assumptions than competing methods.

上一篇:Factoring Variations in Natural Images with Deep Gaussian Mixture Models

下一篇:Improved Multimodal Deep Learning with Variation of Information

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...