资源论文Attentional Neural Network: Feature Selection Using Cognitive Feedback

Attentional Neural Network: Feature Selection Using Cognitive Feedback

2020-01-17 | |  203 |   56 |   0

Abstract

Attentional Neural Network is a new framework that integrates top-down cognitive bias and bottom-up feature extraction in one coherent architecture. The top-down influence is especially effective when dealing with high noise or difficult segmentation problems. Our system is modular and extensible. It is also easy to train and cheap to run, and yet can accommodate complex behaviors. We obtain classification accuracy better than or competitive with state of art results on the MNIST variation dataset, and successfully disentangle overlaid digits with high success rates. We view such a general purpose framework as an essential foundation for a larger system emulating the cognitive abilities of the whole brain.

上一篇:Learning convolution filters for inverse covariance estimation of neural network connectivity

下一篇:Fast Kernel Learning for Multidimensional Pattern Extrapolation

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...