资源论文Probabilistic low-rank matrix completion on finite alphabets

Probabilistic low-rank matrix completion on finite alphabets

2020-01-17 | |  60 |   44 |   0

Abstract

The task of reconstructing a matrix given a sample of observed entries is known as the matrix completion problem. It arises in a wide range of problems, including recommender systems, collaborative filtering, dimensionality reduction, image processing, quantum physics or multi-class classification to name a few. Most works have focused on recovering an unknown real-valued low-rank matrix from randomly sub-sampling its entries. Here, we investigate the case where the observations take a finite number of values, corresponding for examples to ratings in recommender systems or labels in multi-class classification. We also consider a general sampling scheme (not necessarily uniform) over the matrix entries. The performance of a nuclear-norm penalized estimator is analyzed theoretically. More precisely, we derive bounds for the Kullback-Leibler divergence between the true and estimated distributions. In practice, we have also proposed an efficient algorithm based on lifted coordinate gradient descent in order to tackle potentially high dimensional settings.

上一篇:Dynamic Rank Factor Model for Text Streams

下一篇:Recursive Context Propagation Network for Semantic Scene Labeling

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...