资源论文Simple MAP Inference via Low-Rank Relaxations

Simple MAP Inference via Low-Rank Relaxations

2020-01-19 | |  102 |   63 |   0

Abstract

We focus on the problem of maximum a posteriori (MAP) inference in Markov random fields with binary variables and pairwise interactions. For this common subclass of inference tasks, we consider low-rank relaxations that interpolate between the discrete problem and its full-rank semidefinite relaxation. We develop new theoretical bounds studying the effect of rank, showing that as the rank grows, the relaxed objective increases but saturates, and that the fraction in objective value retained by the rounded discrete solution decreases. In practice, we show two algorithms for optimizing the low-rank objectives which are simple to implement, enjoy ties to the underlying theory, and outperform existing approaches on benchmark MAP inference tasks.

上一篇:Optimistic planning in Markov decision processes using a generative model

下一篇:Learning the Learning Rate for Prediction with Expert Advice

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...