资源论文On Prior Distributions and Approximate Inference for Structured Variables

On Prior Distributions and Approximate Inference for Structured Variables

2020-01-19 | |  53 |   39 |   0

Abstract

We present a general framework for constructing prior distributions with structured variables. The prior is defined as the information projection of a base distribution onto distributions supported on the constraint set of interest. In cases where this projection is intractable, we propose a family of parameterized approximations indexed by subsets of the domain. We further analyze the special case of sparse structure. While the optimal prior is intractable in general, we show that approximate inference using convex subsets is tractable, and is equivalent to maximizing a submodular function subject to cardinality constraints. As a result, inference using greedy forward selection provably achieves within a factor of (1-1/e) of the optimal objective value. Our work is motivated by the predictive modeling of high-dimensional functional neuroimaging data. For this task, we employ the Gaussian base distribution induced by local partial correlations and consider the design of priors to capture the domain knowledge of sparse support. Experimental results on simulated data and high dimensional neuroimaging data show the effectiveness of our approach in terms of support recovery and predictive accuracy.

上一篇:A statistical model for tensor PCA

下一篇:An Integer Polynomial Programming Based Framework for Lifted MAP Inference

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...