资源论文Scale Adaptive Blind Deblurring

Scale Adaptive Blind Deblurring

2020-01-19 | |  69 |   47 |   0

Abstract

The presence of noise and small scale structures usually leads to large kernel estimation errors in blind image deblurring empirically, if not a total failure. We present a scale space perspective on blind deblurring algorithms, and introduce a cascaded scale space formulation for blind deblurring. This new formulation suggests a natural approach robust to noise and small scale structures through tying the estimation across multiple scales and balancing the contributions of different scales automatically by learning from data. The proposed formulation also allows to handle non-uniform blur with a straightforward extension. Experiments are conducted on both benchmark dataset and real-world images to validate the effectiveness of the proposed method. One surprising finding based on our approach is that blur kernel estimation is not necessarily best at the finest scale.

上一篇:Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)

下一篇:An Accelerated Proximal Coordinate Gradient Method

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...