资源论文Clamping Variables and Approximate Inference

Clamping Variables and Approximate Inference

2020-01-19 | |  60 |   48 |   0

Abstract

It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition function is upper bounded by the true partition function for a binary pairwise model that is attractive. Here we provide a new, arguably simpler proof from first principles. We make use of the idea of clamping a variable to a particular value. For an attractive model, we show that summing over the Bethe partition functions for each sub-model obtained after clamping any variable can only raise (and hence improve) the approximation. In fact, we derive a stronger result that may have other useful implications. Repeatedly clamping until we obtain a model with no cycles, where the Bethe approximation is exact, yields the result. We also provide a related lower bound on a broad class of approximate partition functions of general pairwise multi-label models that depends only on the topology. We demonstrate that clamping a few wisely chosen variables can be of practical value by dramatically reducing approximation error.

上一篇:Zero-Shot Recognition with Unreliable Attributes

下一篇:Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy Disaggregation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...