资源论文Minimax-optimal Inference from Partial Rankings

Minimax-optimal Inference from Partial Rankings

2020-01-19 | |  43 |   34 |   0

Abstract

This paper studies the problem of rank aggregation under the Plackett-Luce model. The goal is to infer a global ranking and related scores of the items, based on partial rankings provided by multiple users over multiple subsets of items. A question of particular interest is how to optimally assign items to users for ranking and how many item assignments are needed to achieve a target estimation error. Without any assumptions on how the items are assigned to users, we derive an oracle lower bound and the Cramer-Rao lower bound of the estimation error. We prove an upper bound on the estimation error achieved by the maximum likelihood estimator, and show that both the upper bound and the Cramer-Rao lower bound inversely depend on the spectral gap of the Laplacian of an appropriately defined comparison graph. Since random comparison graphs are known to have large spectral gaps, this suggests the use of random assignments when we have the control. Precisely, the matching oracle lower bound and the upper bound on the estimation error imply that the maximum likelihood estimator together with a random assignment is minimax-optimal up to a logarithmic factor. We further analyze a popular rankbreaking scheme that decompose partial rankings into pairwise comparisons. We show that even if one applies the mismatched maximum likelihood estimator that assumes independence (on pairwise comparisons that are now dependent due to rank-breaking), minimax optimal performance is still achieved up to a logarithmic factor.

上一篇:Nonparametric Bayesian inference on multivariate exponential families

下一篇:Bandit Convex Optimization: Towards Tight Bounds

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...