资源论文Real-Time Decoding of an Integrate and Fire Encoder

Real-Time Decoding of an Integrate and Fire Encoder

2020-01-19 | |  60 |   44 |   0

Abstract

Neuronal encoding models range from the detailed biophysically-based Hodgkin Huxley model, to the statistical linear time invariant model specifying firing rates in terms of the extrinsic signal. Decoding the former becomes intractable, while the latter does not adequately capture the nonlinearities present in the neuronal encoding system. For use in practical applications, we wish to record the output of neurons, namely spikes, and decode this signal fast in order to act on this signal, for example to drive a prosthetic device. Here, we introduce a causal, real-time decoder of the biophysically-based Integrate and Fire encoding neuron model. We show that the upper bound of the real-time reconstruction error decreases polynomially in time, and that the L2 norm of the error is bounded by a constant that depends on the density of the spikes, as well as the bandwidth and the decay of the input signal. We numerically validate the effect of these parameters on the reconstruction error.

上一篇:Augur: Data-Parallel Probabilistic Modeling

下一篇:Optimizing Energy Production Using Policy Search and Predictive State Representations

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...