资源论文Sparse Bayesian structure learning with dependent relevance determination prior

Sparse Bayesian structure learning with dependent relevance determination prior

2020-01-19 | |  69 |   49 |   0

Abstract

In many problem settings, parameter vectors are not merely sparse, but dependent in such a way that non-zero coefficients tend to cluster together. We refer to this form of dependency as “region sparsity”. Classical sparse regression methods, such as the lasso and automatic relevance determination (ARD), model parameters as independent a priori, and therefore do not exploit such dependencies. Here we introduce a hierarchical model for smooth, region-sparse weight vectors and tensors in a linear regression setting. Our approach represents a hierarchical extension of the relevance determination framework, where we add a transformed Gaussian process to model the dependencies between the prior variances of regression weights. We combine this with a structured model of the prior variances of Fourier coefficients, which eliminates unnecessary high frequencies. The resulting prior encourages weights to be region-sparse in two different bases simultaneously. We develop efficient approximate inference methods and show substantial improvements over comparable methods (e.g., group lasso and smooth RVM) for both simulated and real datasets from brain imaging.

上一篇:On the Relationship Between LFP & Spiking Data

下一篇:Near-Optimal-Sample Estimators for Spherical Gaussian Mixtures

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...