资源论文Distributed Estimation, Information Loss and Exponential Families

Distributed Estimation, Information Loss and Exponential Families

2020-01-19 | |  57 |   43 |   0

Abstract

Distributed learning of probabilistic models from multiple data repositories with minimum communication is increasingly important. We study a simple communication-efficient learning framework that first calculates the local maximum likelihood estimates (MLE) based on the data subsets, and then combines the local MLEs to achieve the best possible approximation to the global MLE given the whole dataset. We study this framework’s statistical properties, showing that the efficiency loss compared to the global setting relates to how much the underlying distribution families deviate from full exponential families, drawing connection to the theory of information loss by Fisher, Rao and Efron. We show that the “full-exponential-family-ness” represents the lower bound of the error rate of arbitrary combinations of local MLEs, and is achieved by a KL-divergence-based combination method but not by a more common linear combination method. We also study the empirical properties of both methods, showing that the KL method significantly outperforms linear combination in practical settings with issues such as model misspecification, non-convexity, and heterogeneous data partitions.

上一篇:Fairness in Multi-Agent Sequential Decision-Making

下一篇:SerialRank: Spectral Ranking using Seriation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...