资源论文Parallel Direction Method of Multipliers

Parallel Direction Method of Multipliers

2020-01-19 | |  57 |   32 |   0

Abstract

We consider the problem of minimizing block-separable (non-smooth) convex functions subject to linear constraints. While the Alternating Direction Method of Multipliers (ADMM) for two-block linear constraints has been intensively studied both theoretically and empirically, in spite of some preliminary work, effective generalizations of ADMM to multiple blocks is still unclear. In this paper, we propose a parallel randomized block coordinate method named Parallel Direction Method of Multipliers (PDMM) to solve optimization problems with multi-block linear constraints. At each iteration, PDMM randomly updates some blocks in parallel, behaving like parallel randomized block coordinate descent. We establish the global convergence and the iteration complexity for PDMM with constant step size. We also show that PDMM can do randomized block coordinate descent on overlapping blocks. Experimental results show that PDMM performs better than state-of-the-arts methods in two applications, robust principal component analysis and overlapping group lasso.

上一篇:Spectral Clustering of Graphs with the Bethe Hessian

下一篇:Online and Stochastic Gradient Methods for Non-decomposable Loss Functions

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...