Abstract
We consider the problem of minimizing block-separable (non-smooth) convex functions subject to linear constraints. While the Alternating Direction Method of Multipliers (ADMM) for two-block linear constraints has been intensively studied both theoretically and empirically, in spite of some preliminary work, effective generalizations of ADMM to multiple blocks is still unclear. In this paper, we propose a parallel randomized block coordinate method named Parallel Direction Method of Multipliers (PDMM) to solve optimization problems with multi-block linear constraints. At each iteration, PDMM randomly updates some blocks in parallel, behaving like parallel randomized block coordinate descent. We establish the global convergence and the iteration complexity for PDMM with constant step size. We also show that PDMM can do randomized block coordinate descent on overlapping blocks. Experimental results show that PDMM performs better than state-of-the-arts methods in two applications, robust principal component analysis and overlapping group lasso.