资源论文Probabilistic Differential Dynamic Programming

Probabilistic Differential Dynamic Programming

2020-01-19 | |  50 |   33 |   0

Abstract

We present a data-driven, probabilistic trajectory optimization framework for systems with unknown dynamics, called Probabilistic Differential Dynamic Programming (PDDP). PDDP takes into account uncertainty explicitly for dynamics models using Gaussian processes (GPs). Based on the second-order local approximation of the value function, PDDP performs Dynamic Programming around a nominal trajectory in Gaussian belief spaces. Different from typical gradientbased policy search methods, PDDP does not require a policy parameterization and learns a locally optimal, time-varying control policy. We demonstrate the effectiveness and efficiency of the proposed algorithm using two nontrivial tasks. Compared with the classical DDP and a state-of-the-art GP-based policy search method, PDDP offers a superior combination of data-efficiency, learning speed, and applicability.

上一篇:From MAP to Marginals: Variational Inference in Bayesian Submodular Models

下一篇:Fast and Robust Least Squares Estimation in Corrupted Linear Models

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...