资源算法BinaryNetConvolution

BinaryNetConvolution

2020-02-04 | |  55 |   0 |   0

Binary CNN by chainer

Binarized Neural Networks: Training Neural Networks with Weights and Activation Constrained to +1 or -1

I implement Binarized Neural Network by chainer. There are three different point from ordinary CNN.

  1. Using Binarized Weight

  2. Using Binarized Input

  3. Using weight clip that constraine gradient to -1 < x < 1

But I don't implement these below.

  • Shift Based Operation of

  • Batch Normalization

  • AdaMax

  • XNOR Dot

  • stochastic Binarization

Usage

./mnist_cnn.py

./cifar10_cnn.py

You can choose options

  • gpu

  • epoch

  • batchsize

code explanation

link_binary_convolution.py and function_binary_convolution.py define Link of chainer's object

net.py defines network

weight_clip.py constraines gradient to -1 < x < 1 at update step

Reference

I implemented these codes hillbig/binary_net as reference


上一篇:Pytorch-XNOR-Net

下一篇:MCMC_BinaryNet

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...