资源论文Equilibrated adaptive learning rates for non-convex optimization

Equilibrated adaptive learning rates for non-convex optimization

2020-02-04 | |  63 |   51 |   0

Abstract

 Parameter-specific adaptive learning rate methods are computationally efficient ways to reduce the ill-conditioning problems encountered when training large deep networks. Following recent work that strongly suggests that most of the critical points encountered when training such networks are saddle points, we find how considering the presence of negative eigenvalues of the Hessian could help us design better suited adaptive learning rate schemes. We show that the popular Jacobi preconditioner has undesirable behavior in the presence of both positive and negative curvature, and present theoretical and empirical evidence that the socalled equilibration preconditioner is comparatively better suited to non-convex problems. We introduce a novel adaptive learning rate scheme, called ESGD, based on the equilibration preconditioner. Our experiments show that ESGD performs as well or better than RMSProp in terms of convergence speed, always clearly improving over plain stochastic gradient descent.

上一篇:Efficient and Robust Automated Machine Learning

下一篇:Distributed Submodular Cover: Succinctly Summarizing Massive Data

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...