资源论文Sparse PCA via Bipartite Matchings

Sparse PCA via Bipartite Matchings

2020-02-04 | |  57 |   38 |   0

Abstract

 We consider the following multi-component sparse PCA problem: given a set of data points, we seek to extract a small number of sparse components with disjoint supports that jointly capture the maximum possible variance. Such components can be computed one by one, repeatedly solving the single-component problem and deflating the input data matrix, but this greedy procedure is suboptimal. We present a novel algorithm for sparse PCA that jointly optimizes multiple disjoint components. The extracted features capture variance that lies within a multiplicative factor arbitrarily close to 1 from the optimal. Our algorithm is combinatorial and computes the desired components by solving multiple instances of the bipartite maximum weight matching problem. Its complexity grows as a low order polynomial in the ambient dimension of the input data, but exponentially in its rank. However, it can be effectively applied on a low-dimensional sketch of the input data. We evaluate our algorithm on real datasets and empirically demonstrate that in many cases it outperforms existing, deflation-based approaches.

上一篇:Alternating Minimization for Regression Problems with Vector-valued Outputs

下一篇:Halting in Random Walk Kernels

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...