资源论文Associative Memory via a Sparse Recovery Model

Associative Memory via a Sparse Recovery Model

2020-02-04 | |  53 |   39 |   0

Abstract

 An associative memory is a structure learned from a dataset M of vectors (signals) in a way such that, given a noisy version of one of the vectors as input, the nearest valid vector from M (nearest neighbor) is provided as output, preferably via a fast iterative algorithm. Traditionally, binary (or q-ary) Hopfield neural networks are used to model the above structure. In this paper, for the first time, we propose a model of associative memory based on sparse recovery of signals. Our basic premise is simple. For a dataset, we learn a set of linear constraints that every vector in the dataset must satisfy. Provided these linear constraints possess some special properties, it is possible to cast the task of finding nearest neighbor as a sparse recovery problem. Assuming generic random models for the dataset, we show that it is possible to store super-polynomial or exponential number of n-length vectors in a neural network of size O(n). Furthermore, given a noisy version of one of the stored vectors corrupted in near-linear number of coordinates, the vector can be correctly recalled using a neurally feasible algorithm.

上一篇:Deep Convolutional Inverse Graphics Network

下一篇:Algorithmic Stability and Uniform Generalization Ibrahim Alabdulmohsin

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...