资源论文A Gaussian Process Model of Quasar Spectral Energy Distributions

A Gaussian Process Model of Quasar Spectral Energy Distributions

2020-02-04 | |  46 |   30 |   0

Abstract 

We propose a method for combining two sources of astronomical data, spectroscopy and photometry, that carry information about sources of light (e.g., stars, galaxies, and quasars) at extremely different spectral resolutions. Our model treats the spectral energy distribution (SED) of the radiation from a source as a latent variable that jointly explains both photometric and spectroscopic observations. We place a flexible, nonparametric prior over the SED of a light source that admits a physically interpretable decomposition, and allows us to tractably perform inference. We use our model to predict the distribution of the redshift of a quasar from five-band (low spectral resolution) photometric data, the so called “photoz” problem. Our method shows that tools from machine learning and Bayesian statistics allow us to leverage multiple resolutions of information to make accurate predictions with well-characterized uncertainties.

上一篇:Exactness of Approximate MAP Inference in Continuous MRFs

下一篇:Newton-Stein Method: A Second Order Method for GLMs via Stein’s Lemma

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...