资源论文Black-box optimization of noisy functions with unknown smoothness

Black-box optimization of noisy functions with unknown smoothness

2020-02-04 | |  63 |   46 |   0

Abstract

 We study the problem of black-box optimization of a function f of any dimension, given function evaluations perturbed by noise. The function is assumed to be locally smooth around one of its global optima, but this smoothness is unknown. Our contribution is an adaptive optimization algorithm, POO or parallel optimistic optimization, that is able to deal with this setting. POO performs almost as well as the best known algorithms requiring the knowledge of the smoothness. Furthermore, POO works for a larger class of functions than what was previously considered, especially for functions that are difficult to optimize, in a very precise sense. We provide a finite-time analysis of POO’s performance, which shows that its error after n evaluations is at most a factor of image.png away from the error of the best known optimization algorithms using the knowledge of the smoothness.

上一篇:End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture

下一篇:Training Very Deep Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...