资源论文A Dual-Augmented Block Minimization Framework for Learning with Limited Memory

A Dual-Augmented Block Minimization Framework for Learning with Limited Memory

2020-02-04 | |  49 |   36 |   0

Abstract

 In past few years, several techniques have been proposed for training of linear Support Vector Machine (SVM) in limited-memory setting, where a dual blockcoordinate descent (dual-BCD) method was used to balance cost spent on I/O and computation. In this paper, we consider the more general setting of regularized Empirical Risk Minimization (ERM) when data cannot fit into memory. In particular, we generalize the existing block minimization framework based on strong duality and Augmented Lagrangian technique to achieve global convergence for general convex ERM. The block minimization framework is flexible in the sense that, given a solver working under sufficient memory, one can integrate it with the framework to obtain a solver globally convergent under limited-memory condition. We conduct experiments on L1-regularized classification and regression problems to corroborate our convergence theory and compare the proposed framework to algorithms adopted from online and distributed settings, which shows superiority of the proposed approach on data of size ten times larger than the memory capacity.

上一篇:Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling

下一篇:Color Constancy by Learning to Predict Chromaticity from Luminance

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...