资源论文Unlocking neural population non-stationarity using a hierarchical dynamics model

Unlocking neural population non-stationarity using a hierarchical dynamics model

2020-02-04 | |  50 |   32 |   0

Abstract 

Neural population activity often exhibits rich variability. This variability can arise from single-neuron stochasticity, neural dynamics on short time-scales, as well as from modulations of neural firing properties on long time-scales, often referred to as neural non-stationarity. To better understand the nature of co-variability in neural circuits and their impact on cortical information processing, we introduce a hierarchical dynamics model that is able to capture both slow inter-trial modulations in firing rates as well as neural population dynamics. We derive a Bayesian Laplace propagation algorithm for joint inference of parameters and population states. On neural population recordings from primary visual cortex, we demonstrate that our model provides a better account of the structure of neural firing than stationary dynamics models.

上一篇:The Consistency of Common Neighbors for Link Prediction in Stochastic Blockmodels

下一篇:Learning Theory and Algorithms for Forecasting Non-Stationary Time Series

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...