资源论文Fast Second-Order Stochastic Backpropagation for Variational Inference

Fast Second-Order Stochastic Backpropagation for Variational Inference

2020-02-04 | |  113 |   43 |   0

Abstract

 We propose a second-order (Hessian or Hessian-free) based optimization method for variational inference inspired by Gaussian backpropagation, and argue that quasi-Newton optimization can be developed as well. This is accomplished by generalizing the gradient computation in stochastic backpropagation via a reparametrization trick with lower complexity. As an illustrative example, we apply this approach to the problems of Bayesian logistic regression and variational auto-encoder (VAE). Additionally, we compute bounds on the estimator variance of intractable expectations for the family of Lipschitz continuous function. Our method is practical, scalable and model free. We demonstrate our method on several real-world datasets and provide comparisons with other stochastic gradient methods to show substantial enhancement in convergence rates.

上一篇:A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding

下一篇:Decomposition Bounds for Marginal MAP

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...