资源论文Orthogonal NMF through Subspace Exploration

Orthogonal NMF through Subspace Exploration

2020-02-04 | |  63 |   46 |   0

Abstract

 Orthogonal Nonnegative Matrix Factorization (ONMF) aims to approximate a nonnegative matrix as the product of two k-dimensional nonnegative factors, one of which has orthonormal columns. It yields potentially useful data representations as superposition of disjoint parts, while it has been shown to work well for clustering tasks where traditional methods underperform. Existing algorithms rely mostly on heuristics, which despite their good empirical performance, lack provable performance guarantees. We present a new ONMF algorithm with provable approximation guarantees. For any constant dimension k, we obtain an additive EPTAS without any assumptions on the input. Our algorithm relies on a novel approximation to the related Nonnegative Principal Component Analysis (NNPCA) problem; given an arbitrary data matrix, NNPCA seeks k nonnegative components that jointly capture most of the variance. Our NNPCA algorithm is of independent interest and generalizes previous work that could only obtain guarantees for a single component. We evaluate our algorithms on several real and synthetic datasets and show that their performance matches or outperforms the state of the art.

上一篇:Skip-Thought Vectors

下一篇:SubmodBoxes: Near-Optimal Search for a Set of Diverse Object Proposals

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...