资源论文Scalable Inference for Gaussian Process Models with Black-Box Likelihoods

Scalable Inference for Gaussian Process Models with Black-Box Likelihoods

2020-02-04 | |  73 |   37 |   0

Abstract

 We propose a sparse method for scalable automated variational inference (AVI) in a large class of models with Gaussian process (GP) priors, multiple latent functions, multiple outputs and non-linear likelihoods. Our approach maintains the statistical efficiency property of the original AVI method, requiring only expectations over univariate Gaussian distributions to approximate the posterior with a mixture of Gaussians. Experiments on small datasets for various problems including regression, classification, Log Gaussian Cox processes, and warped GPs show that our method can perform as well as the full method under high sparsity levels. On larger experiments using the MNIST and the SARCOS datasets we show that our method can provide superior performance to previously published scalable approaches that have been handcrafted to specific likelihood models.

上一篇:Smooth Interactive Submodular Set Cover

下一篇:Segregated Graphs and Marginals of Chain Graph Models

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...